We’re Building the Future of Data Infrastructure

Posts Tagged 'data center interconnect'

  • September 25, 2024

    Marvell COLORZ 800 Named Most Innovative Product at ECOC 2024

    By Michael Kanellos, Head of Influencer Relations, Marvell

    With AI computing and cloud data centers requiring unprecedented levels of performance and power, Marvell is leading the way with transformative optical interconnect solutions for accelerated infrastructure to meet the rising demand for network bandwidth.

    At the ECOC 2024 Exhibition Industry Awards event, Marvell received the Most Innovative Pluggable Transceiver/Co-Packaged Module Award for the Marvell® COLORZ® 800 family. Launched in 2020 for ECOC’s 25th anniversary, the ECOC Exhibition Industry Awards spotlight innovation in optical communications, transport, and photonic technologies. This recognition highlights the company’s innovations in ZR/ZR+ technology for accelerated infrastructure and demonstrates its critical role in driving cloud and AI workloads.

    Marvell COLORZ 800 Named Most Innovative Product at ECOC 2024

  • September 22, 2024

    Five Things to Know About the Future of Long Distance Optics

    By Michael Kanellos, Head of Influencer Relations, Marvell

    Coherent optical digital signal processors (DSPs) are the long-haul truckers of the communications world. The chips are essential ingredients in the 600+ subsea Internet cables that crisscross the oceans (see map here) and the extended geographic links weaving together telecommunications networks and clouds.

    One of the most critical trends for long-distancer communications has been the shift from large, rack-scale transport equipment boxes running on embedded DSPs often from the same vendor to pluggable modules based on standardized form factors running DSPs from silicon suppliers tuned to the power limits of modules.

    With the advent of 800G ZR/ZR+ modules, the market arrives at another turning point. Here’s what you need to know. 


    It’s the Magic of Modularity

    PCs, smartphones, solar panels and other technologies that experienced rapid adoption had one thing in common: general agreement on the key ingredients. By building products around select components, accepted standards and modular form factors, an ecosystem of suppliers sprouted. And for customers that meant fewer shortages, lower prices and accelerated innovation.

    The same holds true of pluggable coherent modules. 100 Gbps coherent modules based on the ZR specification debuted in 2017. The modules could deliver data approximately 80 kilometers and consumed approximately 4.5 watts per 100G of data delivered. Microsoft became an early adopter and used the modules to build a mesh of metro data centers1.

    Flash forward to 2020. Power per 100G dropped to 4W and distance exploded: 120k connections became possible with modules based on the ZR standard and 400k with the ZR+ standard. (An organization called OIF maintains the ZR standard. ZR+ is controlled by OpenROADM. Module makers often make both varieties. The main difference between the two is the amplifier: the DSPs, number of channels and form factors are the same.) ®

    The market responded. 400ZR/ZR+ became adopted more rapidly than any other technology in optical history, according to Cignal AI principal analyst Scott Wilkinson.

    “It opened the floodgates to what you could do with coherent technology if you put it in the right form factor,” he said during a recent webinar.

  • October 02, 2023

    Is IP over WDM finally here?

    By Loi Nguyen, Executive Vice President, Cloud Optics Business Group, Marvell

    Some twenty years ago the concept of IP over Wavelength Division Multiplexing (WDM) was proposed as a way to simplify the optical infrastructures. In this vision, all optical networks are connected via point-to-point mesh networks with a router at the center. The concept was elegant, but never took off because the optical technology at the time was not able to keep up with the faster innovation cycle of CMOS, driven by Moore’s law. The larger form factor of WDM optics does not allow them to be directly plugged into a router port. Adopting a larger form factor on the router in order to implement IP over WDM in a massive scale would be prohibitively expensive.

    For routers to interface with the networks, a “transponder” is needed, which is connected to a router via short-reach optics on one side and WDM optics to the network on the other. The market for transponders grew quickly to become a multi-billion-dollar market.

    A Star is Born

    About 10 years ago, I was building a team at Inphi, where I was a co-founder, to further develop a nascent technology called silicon photonics. SiPho, as it’s called, leverages commercial CMOS foundries to develop photonics integrated circuits (PIC) that integrate hundreds of components ranging from high-speed modulators and detectors to passive devices such as couplers, waveguides, monitoring diodes, attenuators and so on. We were looking for ideas and customers to bring silicon photonics to the marketplace.

    Fortunately, good technology and market need found one another. A group of Microsoft executives had been considering IP over WDM to launch a new concept of “distributed data centers,” in which multiple data centers in a region are connected by high speed WDM optics using the same form factor as shorter reach “client optics” used in switches and routers. By chance, we met at ECOC 2013 in London for the initial discussion, and then some months later, a product that enabled IP over WDM at cloud scale was born.

Archives